NÁVOD K OBSLUZE

Vyhodnocovací Jednotka průtoku FCU-400

1. Princip měření a Oblast použití 4
2. Rozměrové nákresy 5
3. Postup uvedení do provozu 5
4. Pokyny k montáži 6
5. Čelní panel a svorkovnice7
6. Elektrické připojení 8
7. Příklad zapojení hladinoměrů ULM-53 na RS 485 rozhraní jednotky FCU-400 8
8. Příklad zapojení proudového výstupu jednotky FCU-400-R_-I- 9
9. Nastavení 10
9.1. Klávesnice prístroje 10
9.2. Přepínání měřicích kanálů a pohyb v menu 10
9.3. Odemknutí / uzamknutí konfiguračního menu vyhodnocovací jednotky 12
9.3.1. Odemknutí konfiguračního menu vyhodnocovací jednotky 12
9.3.2. Uzamknutí konfiguračního menu vyhodnocovací jednotky. 13
9.4. Konfigurace vyhodnocovací jednotky. 13
9.4.1. Spárování měřicích senzorů s vyhodnocovací jednotkou. 13
9.4.2. Nastavení měřicího kanálu pro měření průtoku 16
9.4.3. Nastavení reléových výstupů 20
9.4.4. Nastavení binárního vstupu 21
9.4.5. Nastavení parametrů komunikace modbus rtu / rs-485 slave 21
9.4.6. Nastavení parametrů proudového výstupu 22
9.4.7. Obecná nastavení 23
9.5. Čtení statistických údajů 25
9.5.1. Záznam průměrných 5 -minutových průtoků 25
9.5.2. Funkce totalizéru a provozních hodin 26
9.6. Ostatní informace 27
9.6.1. Zobrazení aktuálního datumu a času 27
9.6.2. Zobrazení informací o vyhodnocovací jednotce 27
10. Způsob značení. 27
11. Přiklady správného označení 28
12. Ochrana, bezpečnost, kompatibilita a nevýbušnost 28
13. Používání, obsluha a údržba 28
14. Všeobecné záruční podmínky 28
15. Značení štítkủ 29
16. Technické parametry 30
17. Balení, doprava a skladování. 31

K zajištění maximální bezpečnosti procesů řízení, jsme definovali následující bezpečnostní a informační pokyny. Každý pokyn je označen odpovídajícím piktogramem.

Výstraha, varováni, nebezpečí

Tento symbol informuje o zvlášt' důležitých pokynech pro instalaci a provoz zařízení nebo nebezpečných situacích, které mohou při instalaci a provozu nastat. Nedbání těchto pokynů může být příčinou poruchy, poškození nebo zničení zařízení nebo způsobit poškození zdraví.

Informace

Tento symbol upozorňuje na zvlášt' důležité charakteristiky zařízení a doporučení.
Poznámka
Tento symbol označuje užitečné doplňkové informace.

Bezpečnost

Veškeré operace popsané v tomto návodu k obsluze, musí být provedeny pouze zaškoleným pracovníkem, nebo pově̌̌enou osobou. Záruční a pozáruční opravy musí být prováděny výhradně u výrobce.
Nesprávné použití, montáž nebo nastavení jednotky může vést k haváriím v aplikaci.
Výrobce není odpovědný za nesprávné použití, pracovní ztráty vzniklé bud' přímým nebo nepřímým poškozením a výdaje vzniklé při instalaci nebo použití jednotky.
Nepokoušejte se demontovat, opravovat nebo upravovat jednotku sami. Jednotka nemá žádné servisní díly. Pokud byla zjištěna závada, odpojte jednotku od napájecího napětí a kontaktujte autorizované servisní centrum.
Nepoužívejte jednotku ve výbušném prostředí.
Zabraňte kontaktu napájecích svorek ze strany neoprávněných osob.

1. Princip měření a Oblast použití

Vyhodnocovací jednotka průtoku FCU-400 dle zadaného matematického vztahu přepočítává v reálném čase údaj o výšce hladiny z připojených hladinoměrů na objemový průtok až pro čtyři vstupní kanály najednou. Získaný údaj o objemovém průtoku pro zvolený kanál je zobrazován na displeji jednotky, volitelně spolu s údajem o celkovém proteklém množství (totalizér). Každý kanál má k dispozici tovární totalizér (typicky pro účely fakturace), který není možné uživatelsky resetovat a také uživatelský totalizér resetovatelný z menu jednotky nebo pomocí hardwarového binárního vstupu. Pro účely analýzy objemových průtoků v čase jednotka uchovává data o pětiminutových průtocích ve vnitřní paměti po dobu více než jednoho roku. Tyto data je možné pohodlně exportovat na USB flash disk ve formátu csv.
Jednotka je primárně určena pro použití v sestavě s ultrazvukovými hladinoměry ULM-53 s výstupem RS 485/Modbus RTU, které zajišťují měření výšky hladiny v otevřených kanálech a žlabech. Pro standardní typy žlabů disponuje jednotka předdefinovanými vztahy pro přepočet výšky hladiny na objemový průtok. Napájení snímačů je v této konfiguraci zajištěno přímo z jednotky výstupním napětím 24V DC.

Na předním panelu jsou čtyři tlačítka sloužící k nastavení všech funkcí. Připojovací svorkovnice je umístěna uvnitř spodní části přístroje. Pro připojení snímačů je k dispozici komunikační rozhraní RS 485/Modbus RTU - Master, pro komunikaci s vyšší vrstvou RS 485/Modbus RTU Slave. Jednotky mohou být vybaveny až čtyřmi reléovými výstupy. Volitelně je možné jednotku rozšířit o proudový výstup. Jednotka je vestavěna do přístrojové krabičky určené pro montáž na stěnu. Jednotlivé typy je možno objednat ve dvou napájecích verzích.

2. Rozměrové nákresy

3. Postup uvedení do provozu

Tento postup má následující trì kroky:

- Mechanická montáž - viz kapitola 4

- Elektrické pŘipojení - viz kapitola 6

- Nastavení - viz kapitola 9

4. Mechanická montáž

Všechny montážně instalační práce musí být provedeny při odpojeném přívodu napájení.

ZÁKLADNÍ INFORMACE

- Měřící sonda i řídící jednotka jsou určeny k montáži do venkovního prostředí, nevyžadují zvláštní stavební ani konstrukční úpravy měrných profilů.
- Sonda je určena pro montáž nad průtočný profil.
- Hodnoty přesnosti průtoku a proteklého množství uvedené v tech. parametrech zahrnují chybu vzniklou při měření hladiny a jejím převodu na průtok dle dané konzumční křivky, nezahrnují však chybu měrného průtočného profilu.
- Kvalita měření může být ovlivněna velmi silnou vrstvou pěny na hladině.
- U měrných žlabů je nutno volit takovou velikost, aby byl dobře využit jeho rozsah - je nepřípustné, pohybuje-li se hodnota reálného průtoku pouze v dolní polovině měřícího rozsahu daného žlabu.
- U měrného Thomsonova přepadu je z hlediska přesnosti měření žádoucí využívat především přepady s malým vrcholovým úhlem, aby měřená hladina byla co nejvyšší.
- Při průtoku na horní mezi pracovního intervalu daného měrného místa musí být vy̌ška hladiny alespoň 30 cm , jinak se výrazně snižuje přesnost měření.
- Činnost řídící jednotky vyžaduje přívod el. energie bud 230 V AC / 10 VA , nebo 24 V DC / 8 VA, ultrazvuková sonda je napájena zřídící jednotky.

Po odšroubování spodního krytu, je přístupná svorkovnice napájení L1, N, PE. Zde může zarízení obsluhovat pouze osoba znalá s vyšší kvalifikací (viz vyhláška č. 50/1978 Sb. o odborné způsobilosti v elektrotechnice). Přesnost měřící soupravy závisí na správném zaměření sondy a nastavení provozních parametrů jednotky.

- Jednotka je odolná proti rušení a odpovídá bezpečnostním normám. Instalace by měla být provedena v souladu s místními předpisy.
- Před instalací se seznamte se základními bezpečnostními požadavky uvedenými na straně 4 .
- Ujistěte se, aby napájecí napětí v síti odpovídalo jmenovitému napětí, jak je uvedeno na identifikačním štítku jednotky.
- Zatížení musí odpovídat požadavkům uvedeným v technických datech.
- Finální montáž, uvedení do provozu a programování vnitřních (neuživatelských) parametrů provádí servisní skupina, popř. pracovníci odborně zaškolení!
- Před montáží odpojte přívod elektrického proudu.
- Před prvním spuštěním zkontrolujte správné připojení kabelů k jednotce.
- Přesnost měřící soupravy závisí na správném zaměření sondy a nastavení provozních parametrů jednotky.

5. Čelní PANEL A SVORKOVNICE

č. svorky	všechny typy FCU-400
1	L/ + (230 / 24V)
2	$\mathrm{N} /-(230 / 24 \mathrm{~V})$
3	PE
4	RE 1 ($100 \mathrm{~mA} / 250 \mathrm{~V} \mathrm{AC} \mathrm{)}$
5	RE 1 ($100 \mathrm{~mA} / 250 \mathrm{VAC}$)
6	RE 2 ($100 \mathrm{~mA} / 250 \mathrm{~V} \mathrm{AC} \mathrm{)}$
7	RE 2 ($100 \mathrm{~mA} / 250 \mathrm{~V} \mathrm{AC} \mathrm{)}$
8	RE 3 (24 V DC)
9	RE 3 (24 V DC)
10	RE 4 (24 V DC)
11	RE 4 (24 V DC)
12	Stínění kabelu (RS 485 - Master)
13	A (RS 485 - Master)
14	B (RS 485 - Master)
15	Stínění kabelu (RS 485 - Slave)
16	A (RS 485 - Slave)
17	B (RS 485 - Slave)
18	$+U_{S}$
19	- Us
20	Bi (binární vstup pro nulování)
21	Bi (binární vstup pro nulování)

č. svorky	typ FCU-400-R_-I
22	aktivní proudový výstup (+ 24 V)
23	aktivní proudový výstup (0 V)
24	pasivní proudový výstup (+)
25	pasivní proudový výstup (-)

Čelní panel

Svorkovnice FCU-400-R_-0

Svorkovnice FCU-400-R_-I

6. Elektrické připojení

Elektrické pripojení se provede v beznapět'ovém stavu.

- Svorkovnice je přístupná po odšroubování spodního krytu na čelní straně jednotky.
- Přivod napájecího napětí (svorky 1 a 2) je možno připojit k napájecí síti pouze přes pojistku nebo jistič (max. 16A)!
- Na svorky 12, 13 a 14 (RS 485 - Master), se připojují komunikační rozhraní schválených hladinoměrů s výstupem Modbus (např. ULM-53-M). Napájení hladinoměrů potom na svorky 18 a 19, viz kap. 7.
- Binární vstup (napríklad pro reset uživatelských totalizérů) se připojuje na svorky 20 a 21. Volitelné reléové výstupy jsou vyvedeny na svorky (4, 5 a 6, 7 a 8, 9 a 10, 11).
- Svorky 15, 16 a 17 (RS 485 - Slave) jsou určeny jako rozhraní pro Modbus komunikaci s vyšší vrstvou.
- Verze disponující proudovým výstupem je možné zapojit jak v aktivní (svorky 22, 23), tak i pasivní variantě s externím zdrojem (svorky 24, 25), viz kap.8.

7. PŘíklad zapojení hladinoměrů ULM-53 na RS 485 rozhraní JEDNotky FCU-400

Maximální vzdálenost modulu od průběžného vedení (délka T segmentu) je 3 m . Na koncových stanicích je nutno zapojovat zakončovací rezistory Rzo velikosti 120Ω a zároveň zakončovací rezistory nesmí být zapojeny na průběžných stanicích. Kabel musí být stíněný kroucený pár o průřezu žily $0,35 \ldots 0,8 \mathrm{~mm} 2 \mathrm{~s}$ impedancí blízkou 120Ω. Stínění kabelu se připojuje na svorku stínění konektoru linky RS485 a pouze v jednom bodě segmentu se spojuje se svorkou PE rozváděče (přímé uzemnění). Pokud je linka RS-485 vedena mimo jeden bleskosvodný systém je, nutno ji chránit vhodnou přepětovou ochranou.
Při problémech s komunikací v důsledku silného rušení je vhodné systém instalovat do kovového rozváděče a silné zdroje rušení (např. frekvenční měniče) instalovat mimo tento rozváděč.

Hladinoměry ULM-53 ve standardním provedení nemají terminační odpor připojen. Jednotka FCU400 disponuje přepínačem pro volitelné prípojení terminačního odporu.

8. PŘíkLAD ZAPOJENí PROUDOVÉHO VÝSTUPU JEDNOTKY FCU-400-R_-I-

a) Zapojení s využitím interního zdroje napětí jednotky FCU-400 (aktivní výstup)

b) Zapojení s externím zdrojem napětí (pasivní výstup)

* - Výstupní zařízení (např. programovatelná zobrazovací jednotka PDU, analogový vstup PLC apod.).

Nesprávné zapojení proudového výstupu může vést k poškození jednotky!

9. Nastavení

Zařízení FCU-400 Ize ovládat pomocí 4 tlačítek a maticového OLED displeje s rozlišením 128x64 bodů. Funkce jednotlivých tlačítek je různá v závislosti na aktuální pozici v nabídce menu. Aktuální funkce tlačítek je zobrazována v dolní části displeje nad jednotlivými tlačítky.

Po dokončení nastavení jednotky doporučujeme provést RESET (CONFIGURATION/RESET) a zkontrolovat správnost nastavených parametrů!)

9.1. Klávesnice přístroje

9.2. PŘEPÍNÁNí mě̌̌icích KANÁLŮ A POHYB V MENU

Aktuální měřený průtok na jednotlivých kanálech je zobrazován na hlavní obrazovce. Typ hlavní obrazovky Ize nastavit v menu DISPLAY MODE. (viz kap. 9.4.7. a).

Na hlavní obrazovce typu FLOW+TOTALIZER je zobrazován aktuální průtok s fyzikální jednotkou, jeho grafické znázornění, stav totalizeru, stav výstupních relé a stav komunikace se senzorem. Zařízení se do hlavní obrazovky dostává ihned po připojení napájení a jeho grafická podoba je následující:

„NO ECHO" - komunikace v porádku, senzor nepiijfímá echo
"OUT OF RANGE" - mě̌ená hodnota mimo nastavený rozsah (meze MIN. VALUE a MAX. VALUE)

Na obrazovce typu FLOW je zobrazován pouze údaj aktuálního průtoku. Grafická podoba této obrazovky je následující:

Opakovaným stiskem tlačítka \longrightarrow Ize přecházet mezi jednotlivými měřicími kanály, které mají povolenou vizualizaci (viz kap. 9.4.2.h).
Stiskem tlačítka ENT dojde k přechodu do základního menu zařízení. Stiskem tlačítka ESC dojde k návratu na hlavní obrazovku.

V nabídce menu se Ize pohybovat pomocí tlačítek \square a . Stiskem tlačítka ENT vstoupíme do podnabídky dané položky a stiskem tlačítka ESC přejdeme do předchozí nabídky.

V nabídce menu s v horní části obrazovky zobrazuje název nadřazené položky a identifikační číslo nabídky menu. Každá nabídka má své jedinečné identifikační číslo.

9.3. OdEMKNUTÍ/ UZAMKNUTÍ KONFIGURAČNÍHO MENU VYHODNOCOVACÍ JEDNOTKY

Kompletní konfiguraci vyhodnocovací jednotky Ize provést v nabídce CONFIGURATION v základním menu (MAIN MENU). Vstup do této nabídky je povolen pouze pověřeným osobám, proto je tato nabídka chráněna čtyřmístným uživatelským heslem.

Toto heslo je ve výrobě nastaveno na hodnotu „1234".

9.3.1. Odemknutí Konfiguračního menu vyhodnocovací Jednotky

Odemčení konfiguračního menu Ize provést zadáním platného přístupového hesla. Toto heslo může být zadáno přímo při vstupu do nabídky CONFIGURATION z hlavního menu nebo v položce PASSWORD CHECK v hlavním menu. Pro zadání uživatelského hesla je na displeji zobrazen text „INSERT PASSWORD?".

Stiskem tlačítka ESC se vrátíme do předchozí nabídky a stiskem tlačítka ENT se zobrazí nabídka pro zadání přístupového hesla, jehož výchozí hodnota je „0000". Stiskem tlačítka \circlearrowright Ize přecházet mezi pozicemi. Aktuální pozice je zvýrazněna. Stiskem tlačítka Ize nastavovat čísla na aktuální pozici v rozmezí 0 až 9 . Stiskem tlačítka ENT dojde k potvrzení hesla.

V prípadě chybně zadaného hesla je zobrazen text „INCORRECT" a stiskem tlačítka ESC je opět zobrazen text „INSERT PASSWORD" pro volbu zadání hesla či návratu do předchozího menu.

Je-li zadané heslo správné, dojde po stisku tlačítka ENT k odemčení konfiguračního menu. Bylo-li heslo zadáváno při vstupu do nabídky CONFIGURATION, dojde k přístupu do této nabídky. Bylo-li heslo zadáváno v položce PASSWORD CHECK, dojde k návratu do hlavní nabídky. Přístup do konfiguračního menu CONFIGURE bude již bez nutnosti zadávání hesla. Pokud bude zařízení po dobu 10 minut v nečinnosti, dojde k automatickému návratu do hlavní obrazovky a uzamčení jednotky.

9.3.2. Uzamknutí Konfiguračního menu vyhodnocovací Jednotky

Uzamčení konfiguračního menu Ize provést v položce PASSWORD CHECK v hlavním menu. Pro zadání uživatelského hesla je na displeji zobrazen text „INSERT PASSWORD?". Stiskem tlačítka ESC se vrátíme do předchozí nabídky a stiskem tlačítka ENT se zobrazí pole pro zadání přístupového hesla. Pro uzamčení konfiguračního menu ponecháme výchozí hodnotu „0000" a potvrdíme tlačítkem ENT. Na displeji se zobrazí text „INCORRECT" a dojde k uzamčení přístupu do konfiguračního menu jednotky.

Stiskem tlačítka ESC se vrátíme do hlavního menu.

9.4. Konfigurace vyhodnocovací Jednotky

V nabídce CONFIGURATION Ize kompletně konfigurovat jednotlivé měřící kanály, změnit uživatelské heslo, nastavit interní datum a čas a uvést zařízení do továrního nastavení.

9.4.1. SpÁrovÁNí měŘicích SENZORŮ s VYhodnocovací Jednotkou

Následující popis se věnuje konfiguraci senzoru na měřícím kanálu 1. Konfigurace ostatních kanálů probíhá totožně. Při připojování více senzorů je nutné, aby připojování probíhalo postupně. Nejprve připojit jeden senzor a provést jeho konfiguraci. Poté připojit další senzor a provést jeho konfiguraci, atd. V případě připojení všech senzorů najednou hrozí riziko, že budou mít tyto senzory stejnou výchozí adresu a bude docházet ke kolizi komunikace. V nabídce CONFIGURATION/ IO CHANNELS/INPUT CHANNELS/CHANNEL 1 vybereme položku ADDRESS a nastavíme adresu měřícího kanálu shodnou s výchozí adresou senzoru (v továrním nastavení senzoru ULM-53 je tato adresa 0×01).

V téže nabídce pomocí tlačítka ENT aktivujeme položku ACTIVATION. Je-li položka aktivní, je u ní zobrazen symbol \square. V opačném případě je u ní zobrazen symbol \square. Aktivací této položky dojde k aktivaci komunikace mezi vyhodnocovací jednotkou a sensorem. Kanály, na kterých nejsou připojeny senzory musí zůstat neaktivní.

a) Automatická parametrizace senzoru

Automatická parametrizace senzoru slouží k nastavení základních parametrů senzoru pro správnou činnost s vyhodnocovací jednotkou.

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/PARAM SENSOR vybereme položku AUTOSET.

Po aktivaci této položky dojde k automatickému nastavení senzoru. Probíhající konfigurace je signalizována textem „WRITING". Po úspěšném dokončení konfigurace je zobrazen text „WRITE OK".

Pokud komunikace neproběhla úspěšně, je zobrazen text „WRITE ERROR".

Stiskem tlačítka ESC se vrátíme do předchozí nabídky.
Na příčině chyby komunikace může být buď chybné zapojení senzoru, nebo chybně nastavená adresa senzoru.

b) Nastavení vzdálenosti senzoru ode dna žlabu

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/PARAM SENSOR vybereme položku SENSOR DISTANCE a nastavíme vzdálenost senzoru od dna měrného žlabu. Vzdálenost je nastavována v metrech na čtyři desetinná místa. Stiskem tlačítka \circlearrowright Ize přecházet mezi pozicemi. Aktuální pozice je zvýrazněna. Stiskem tlačítka Ize nastavovat čísla na aktuální pozici v rozmezí 0 až 9 . Stiskem tlačítka ENT dojde k potvrzení a uložení nastavené vzdálenosti do senzoru.

PARAMETRISATION 50
AUTOSETISTANCE
SENSORDISTANCE
MEASUREPERSEC
ADRESSESITY
SENSITIVIY
ESC

Po úspěšném zápisu je opět zobrazen text „WRITE OK". Stiskem tlačítka ESC se vrátíme do předchozí nabídky.

c) Nastavení počtu měření senzoru za sekundu

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/PARAM SENSOR dále vybereme položku

MEASURE PER SEC a nastavíme počet měření senzoru za sekundu (1-5).

Po úspěšném zápisu je opět zobrazen text „WRITE OK". V případě zapsání hodnot mimo povolený rozsah (1-5) je zobrazen text „WRITE ERROR". Stiskem tlačítka ESC se vrátíme do předchozí nabídky.

d) Nastavení interní adresy senzoru

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/PARAM SENSOR vybereme položku ADDRESS a nastavíme novou adresu senzoru. Adresu nastavíme v rozmezí 0×01 až $0 \times F 7$ (desítkově 247). Po úspěšném zápisu je opět zobrazen text „WRITE OK". Stiskem tlačítka ESC se vrátíme do předchozí nabídky.

Jelikož byla změněna vnitřní adresa senzoru, je nutné změnit i adresu měřícího kanálu. V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1 vybereme položku ADDRESS a nastavíme novou adresu.

Tímto je parametrizace senzoru dokončena.

e) Nastavení citlivosti senzoru

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/PARAM SENSOR dále vybereme položku SENSITIVITY a vybereme vysokou citlivost HIGH nebo nízkou LOW.

f) Kontrola stavu komunikace se senzorem

V hlavním menu v položce DIAGNOSTIC zkontrolujeme stav komunikace a měření.
Pomocí tlačítka vybereme požadovaný kanál a zkontrolujeme, zda senzor komunikuje s vyhodnocovací jednotkou.

Stav komunikace je vyjádřen jednou z pěti hlášek zobrazenou vlevo dole na displeji:

- OK... komunikace v pořádku, senzor přijímá echo
- COMM ERROR...senzor odpovídá na dotazy s komunikačními chybami
- NO RESPONSE... senzor neodpovídá na dotazy
- NO ECHO...komunikace v pořádku, senzor nepřijímá echo
- OUT OF RANGE... měřená hodnota mimo nastavený rozsah (meze MIN.VALUE a MAX. VALUE)

V prípadě připojení více senzorů opakujeme postup v kap. 9.4.1. pro každý z připojených senzorů (CHANNEL 1 až CHANNEL 4).

9.4.2. NASTAVENí MĚŘICího KANÁLU PRO MĚŘENÍ PRŮTOKU

Následující popis se věnuje konfiguraci vyhodnocovací jednotky na měrícím kanálu 1. Konfigurace ostatních kanálů probíhá totožně.
a) Nastavení jednotky průtoku

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/MEASUREMENT/ FLOW vybereme položku UNITS a nastavíme požadovanou jednotku průtoku.

Pomocí tlačítek \boldsymbol{Z} a ize vybrat požadovanou jednotu.
Po stisku tlačítka ENT dojde k uložení nastavené jednotky a návratu do předchozího menu.

b)Nastavení rozsahu měřeného průtoku

V téže nabídce vybereme položku RANGE a v nabídce MIN.VALUE a MAX.VALUE nastavíme minimální a maximální hodnotu průtoku. Hodnota je nastavována ve fyzikální jednotce nastavené v předchozím bodu a).

Tyto hodnoty slouží pro grafické zobrazování průtoku v bargrafu (viz kap. 9.2) a kontrole, zda je měřený průtok ve stanovených mezích. V případě překročení těchto mezí dojde k zastavení měření a k indikaci chyby pomocí textu „OUT OF RANGE" (viz kap. 9.2).

c) Nastavení konzumční křivky

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/MEASUREMENT/ FLOW vybereme položku FLUMES.

Měřenou výšku hladiny lez přepočítávat na průtok pomocí předem definované konzumční křivky pro Parshallovy žlaby P1 až P9, nebo pomocí uživatelsky definovatelné konzumční křivky pomocí vzorce.

V případě volby předem definovaných Parshallových žlabů zvolíme položku PREDEF. PARSHALL.

Tlačítkem vybereme požadovaný typ žlabu a tlačítkem ENT výběr potvrdíme a vrátíme se do předchozího menu.

V prípadě volby uživatelsky definovatelné křivky zvolíme položku FORMULA.

FLUMES	
PREDEF, PARSHALL	68
DFORMULA	\square
LOADFROMUSB	\square
ESC	

Dále v nabídce SELECT FORMULA pomocí tlačítka \circlearrowright zvolíme požadovaný tvar vzorce pro definování konzumční křivky a tlačítkem ENT výběr potvrdíme a vrátíme se do předchozího menu.

V nabídce INSERT CONSTANTS nadefinujeme jednotlivé konstanty, které se vyskytují ve zvoleném vzorci.

V případě volby uživatelsky definovatelné křivky pomocí tabulky zvolíme položku LOAD FROM USB.

Po stisknutí tlačítka ENT dojde k načtení tabulky do interní paměti vyhodnocovací jednotky.
Definice tabulky:

- Název a formát souboru: data.csv
- Oddělovač sloupců: středník
- Levý sloupec: výška hladiny v metrech
- Pravý sloupec: průtok v m3/s
- Formát hodnot: dekadické číslo, oddělení desetinné části pomocí tečky
- Maximální počet bodů křivky (řádků tabulky): 128
d) Nastavení formátu měřeného průtoku (počtu desetinných míst)

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1/MEASUREMENT/ FLOW vybereme položku FORMAT.

Pomocí tlačítek a zvolíme požadovaný počet desetinných míst. V tomto formátu bude měřená hodnota zobrazována na hlavní obrazovce (viz kap. 9.2). V případě překročení rozsahu v nastaveném formátu dojde k zobrazení symbolů ,-------".

e) Nastavení potlačení malých průtoků

V téže nabídce vybereme položku SUPP LEVEL. Tato položka slouží pro potlačení malých průtoků. Dokud nedojde k překročení nastavené výšky hladiny, bude indikován nulový průtok. Výška hladiny je nastavována v metrech na čtyři desetinná místa.

f) Nastavení maximální doby výpadku echa

V nabídce CONFIGURATION/IO CHANNELS/INPUT CHANNELS/CHANNEL 1 vybereme položku ERROR ECHO a nastavíme maximální dobu trvalého výpadku echa (0-99 s).

V prípadě, že nebude senzor prijímat echo déle, než nastavený čas, dojde k vyhodnocení tohoto výpadku jako chybný stav. Tento stav je indikován na hlavní obrazovce.

g) Nastavení rychlosti odezvy měření

Funkci je vhodné použít pro potlačení výkyvů zobrazení při rychlých nebo skokových změnách stavu hladiny (rozvirrená hladina). Následná doba reakce měření bude delší a vyhodnocovací jednotka bude reagovat na rychlé změny s definovaným zpožděním v sekundách.

V téže nabídce vybereme položku DAMPING a nastavíme požadovanou dobu odezvy měření (0.0 - 9.9 s).

Po stisku tlačítka ENT dojde k uložení nastavené jednotky a návratu do předchozího menu.

h) Povolení vizualizace měřicího kanálu na hlavní obrazovce

Je-li povolena vizualizace daného měřícího kanálu, Ize tento kanál zobrazit na hlavní obrazovce (viz kap. 9.2.). Vizualizaci kanálu na hlavní obrazovce aktivujeme pomocí tlačítka ENT u položky VISUALISATION. Je-li položka aktivní, je u ní zobrazen symbol ll V opačném případě je u ní zobrazen symbol ${ }^{\text {D. }}$

9.4.3. Nastavení reléových výstupů

Nastavení reléových výstupů Ize provést v nabídce CONFIGURATION/IO CHANNELS/RELAYS.

Volbou položek RELAY1 až RELAY4 se provede konfigurace jednotlivých relé.
Každé relé může pracovat v několika režimech:

- Přímé manuální ovládání
- Funkce alarmu
- Funkce pulsního výstupu

Pomocí položky DIRECT MANUAL Ize ovládat relé přímo manuálně.
Do funkce alarmu přejdeme zadáním maximální hodnoty průtoku v položce ALARM. Po překročení této hodnoty dojde k aktivaci příslušného relé.

Do funkce pulsního výstupu přejdeme zadáním hodnot WIDTH PULSE a QUANTITY v položce PULSE OUTPUT. V položce WIDTH PULSE Ize nastavit šířku pulsu v rozmezí 0.1 až 9.9 s . V položce QUANTITY Ize nastavit proteklé množství pro generování pulsu.

Položkou INVERT Ize zvolit, zda je relé v normálním (aktivní relé - sepnuto, neaktivní - rozepnuto) či inverzním režimu (aktivní relé - rozepnuto, neaktivní - sepnuto).

V položce SOURCE Ize zvolit kanál na který se bude funkce relé vázat.

9.4.4. Nastavení binárního vstupu

Nastavení binárního vstupu Ize provést v nabídce CONFIGURATION/IO CHANNELS/BINARY INPUT. V této nabídce Ize zvolit, který uživatelský totalizer bude při aktivování binárního vstupu vynulován. Volbu Ize provést stiskem tlačítka ENT u příslušné položky. Více o totalizerech v kap. 9.5.2.

9.4.5. NaStavení parametrů komunikace modbus rtu / rs-485 sLave

Kompletní nastavení komunikačních parametrů linky RS-485 a adresy zařízení v protokolu Modbus RTU(Slave) Ize provést v nabídce CONFIGURATION/IO CHANNELS/MODBUS SLAVE.

IOCHANELS	1
INPUTCHANNELS	
RELAYS	
BINARYINPUT	
DMDBUSSLAVE	
CURRENTOUTPUT	
ESC	

a) Nastavení komunikační rychlosti

Nastavení komunikační rychlosti lze provést v nabídce BAUD RATE.

Požadovanou komunikační rychlost Ize vybrat pomocí tlačítka \circlearrowright z hodnot 4200,9600,19200 a $38400 \mathrm{Bd} / \mathrm{s}$. Stiskem tlačítka ENT dojde k uložení vybrané komunikační rychlosti a návratu do předchozího menu. V případě stisku tlačítka ESC dojde k návratu do předchozí nabídky bez uložení nastavení.
b) Nastavení formátu komunikace

Nastavení formátu komunikace Ize provést v nabídce FORMAT.

Požadovaný formát Ize vybrat pomocí tlačítka \leftrightharpoons z typů $8 \mathrm{~N} 1,8 \mathrm{~N} 2,8 \mathrm{E} 1,8 \mathrm{E} 2,8 \mathrm{O} 1$ a 8 O 2 . Stiskem tlačítka ENT dojde k uložení vybraného komunikačního formátu a návratu do předchozího menu. V případě stisku tlačítka ESC dojde k návratu do předchozí nabídky bez uložení nastavení.

c) Nastavení Modbus adresy zařízení

Nastavení Modbus adresy zařízení FCU-400 Ize provést v nabídce ADDRESS.

Požadovanou adresu Ize zvolit v rozsahu 0x01 až 0xF7(247 dec). Stiskem tlačítka ENT dojde k uložení nastavené adresy a návratu do předchozího menu. V případě stisku tlačítka ESC dojde k návratu do předchozí nabídky bez uložení nastavení.

9.4.6. Nastavení parametrů proudového výstupu

Kompletní nastavení proudového výstupu lze provést v nabídce CONFIGURATION/IO CHANNELS/ CURRENT OUTPUT.

a) Nastavení minimálního průtoku

Minimální průtok, který odpovídá minimálnímu proudu na výstupu Ize nastavit v položce MIN FLOW.

b) Nastavení maximálního průtoku

Maximální průtok, který odpovídá maximálnímu proudu na výstupu Ize nastavit v položce MAX FLOW.

CURRENTOUTPUT	107	
MINFLOW		
DMAXFLOW		
SOURCE		
TYPE		
ESC		

c) Nastavení zdrojového kanálu

Položka SOURCE slouží pro nastavení zdrojového kanálu, na který bude proudový výstup vázán.

d) Nastavení typu proudového výstupu

Typ proudového výstupu Ize zvolit v položce TYPE. Lze zvolit mezi rozsahem 0-20 mA a 4-20 mA s velikostí chybového proudu $3,75 \mathrm{~mA}$ nebo 22 mA .

9.4.7. Obecná nastavení

a) Nastavení typu hlavní obrazovky

Typ hlavní obrazovky Ize nastavit v nabídce CONFIGURATION/DISPLAY MODE.
Po přístupu do této položky je možné vybrat ze dvou zobrazení: FLOW, nebo FLOW+TOTALIZER.

V případě výběru položky FLOW je na hlavní obrazovce zobrazován aktuální průtok.

DISPLAYMODE	103
DFLOW	\square
FLOW + TOTALIZER	\square
ESC	

V prípadně výběru položky FLOW+TOTALIZER je na hlavní obrazovce zobrazován aktuální průtok spolu se stavem totalizéru.

DISPLAYMODE	103
FLOW	\square
DFLOW + TOTALIZER	\square
ESC	

b) Změna prístupového hesla

Přístupové heslo Ize změnit v nabídce CONFIGURATION/PASSWORD.
Po přístupu do této položky je uživatel vyzván k opětovnému zadání uživatelského hesla.

CONFIGURATION
I/OCHANNELS
DISPLAYMODE
DPASSWORD
DATETIME
FACTORYDEFAULT
ESC

V prípadě chybně zadaného hesla je zobrazen text „INCORRECT" a stiskem tlačítka ESC je zobrazen text „INSERT PASSWORD" pro volbu zadání hesla znovu či návratu do předchozího menu. V prípadě zadání správného hesla se zobrazí pole pro změnu přístupového hesla, jehož výchozí hodnota je stávající heslo. Stiskem tlačítka \circlearrowright Ize přecházet mezi číslicemi. Aktuální pozice je zvýrazněna. Stiskem tlačítka Ize nastavovat čísla na aktuální pozici v rozmezí 0 až 9 . Stiskem tlačítka ENT dojde k potvrzení hesla.

c) Nastavení datumu a času

Datum a čas Ize změnit v nabídce CONFIGURE/DATE-TIME. Po přístupu do této položky je na displeji zobrazeno aktuální datum a čas. Stiskem tlačítka \circlearrowright Ize přecházet mezi pozicemi. Aktuální pozice je zvýrazněna. Stiskem tlačítka Ize nastavovat čísla na aktuální pozici. Stiskem tlačítka ENT dojde k potvrzení zadaného datumu a času. V okamžik stisknutí jsou vynulováno sekundové počítadlo.

d) Uvedení vyhodnocovací jednotky do výrobního nastavení

Nastavení výchozích hodnot z výroby Ize provést v nabídce CONFIGURE/FACTORY DEFAULT. Po přístupu do této položky je na displeji zobrazen text „ARE YOU SURE?". Stiskem tlačítka ESC se vrátíme do předchozí nabídky. Stiskem tlačítka ENT dojde k načtení výchozích hodnot z výroby a navrácení do předchozí nabídky.

Po aktivaci této funkce jsou uvedeny všechny parametry jednotky do výchozího stavu (včetně přístupového hesla). Záznamy statistiky, totalizerů a motohodin zůstávají nezměněny!!!

9.5. ČTENÍ STATISTICKÝCH ÚDAJŮ

Vyhodnocovací jednotka FCU-400 je vybavena interní pamětí FLASH do které jsou pravidelně ukládány průměrné 5 minutové průtoky ze všech kanálů. Mimo tyto průměrné hodnoty průtoků jsou ukládány do paměti FRAM provozní hodiny každého kanálu a nenulovatelná počitadla celkového proteklého množství na každém kanálu, tzv. totalizery.

9.5.1. ZÁZNAM PRŮMĚRNÝCH 5-MINUTOVÝCH PRŮTOKŮ

Každý záznam průměrných 5 minutových průtoků obsahuje datum a čas záznamu, hodnotu průtoku s odpovídající nastavenou jednotkou a dobu měření v odpovídajícím 5minutovém úseku (v sekundách). Tyto hodnoty jsou uloženy pro všechny kanály. Vyhodnocovací jednotka tak umožňuje procházet historii průtoků až za posledních 15 měsíců.
Čtení těchto záznamů je možné třemi způsoby:
a) Zobrazení na displeji

V nabídce STATISTIC/VIEW STATISTIC zvolíme položku 5-MIN FLOW. Po vstupu do této položky zadáme požadované datum a čas záznamu, který chceme zobrazit na displeji. Čas je zadáván pouze jako požadovaná hodina.

Po stisku tlačítka ENT dojde k vyhledávání požadovaného záznamu. V průběhu vyhledávání je v horní části displeje zobrazen text „LOADING...". V případě nalezení požadovaného záznamu, dojde k jeho zobrazení na displej. Na displeji je pak zobrazen první nalezený záznam v nastavené hodině.

Výše uvedený záznam má pak následující význam:
Dne 8.1.2014 v časovém úseku 10:00-10:05 byl průměrný průtok na 1 . kanálu $0,565 \mathrm{m3} / \mathrm{s}$. Měření probíhalo po dobu $300 \mathrm{~s}, \mathrm{tj}$. 5 min . V tomto 5 minutovém záznamu nedošlo k žádné chybě měření.

Pro posun na další záznam slouží tlačítko Pro zobrazení zaznamenaných údajủ na dalších kanálech slouží tlačítko \longrightarrow.

V prípadě nenalezení požadovaného záznamu je na displeji zobrazen text „NOT FOUND".

Stiskem tlačítka ESC Ize přejít do předchozí nabídky.

b) Zkopírováním všech záznamů na USB Flash Disk

V nabídce STATISTIC zvolíme položku COPY STAT. TO USB. Po vstupu do této položky je uživatel vyzván k vložení USB Flash Disku do USB konektoru.

Po zasunutí disku dojde ke kopírování všech záznamů na přenosné médium. V průběhu kopírování je na displeji zobrazován procentuální stav dokončení kopírování.

Akci Ize v libovolném okamžiku ukončit stisknutím tlačítka ESC.Po dokončení kopírování je na displeji zobrazen text „COMPLETED".

Při vyjmutí USB disku bez řádného ukončení může dojít k poškození ukládaného souboru. Zkopírovaná data jsou uložena ve formátu CSV v souboru s názvem FCU400.csv.
c) Čtením záznamů přes komunikační kanál RS-485 Modbus RTU-Slave

Zaznamenaná data Ize vyčítat přes komunikační rozhraní RS-485 s protokolem Modbus RTU-Slave.

9.5.2. Funkce totalizéru a provozních hodin

Vyhodnocovací jednotka obsahuje na každém měřicím kanále dvě počitadla proteklého množství - Totalizery. První totalizer (tovární) slouží jako počítadlo celkového proteklého množství za dobu provozu zařízení a nelze jej vynulovat. Druhý totalizer (uživatelský) slouží jako počitadlo proteklého množství, které Ize libovolně nulovat. Tyto uživatelské totalizery Ize nulovat přímo z menu, nebo připojeným tlačítkem na binarní vstup (viz kap. 9.4.5).

Totalizery a motohodiny Ize zobrazit v nabídce STATISTIC/VIEW TOTALIZERS. Po vstupu do této nabídky je zobrazen tovární totalizer kanálu 1 a motohodiny kanálu 1.

Stiskem tlačítka \qquad dojde k zobrazení uživatelského totalizeru na kanálu 1, který Ize pomocí tlačítka CLR vynulovat.

Dalším stiskem tlačítka pak Ize listovat mezi jednotlivými totalizery všech kanálů.

9.6. Ostatní informace

9.6.1. Zobrazení aktuálního datumu a času

Aktuální datum a čas Ize zobrazit v hlavním menu v položce DATE/TIME VIEW.

9.6.2. Zobrazení informací o vyhodnocovací Jednotce

Informace o vyhodnocovací jednotce FCU-400 Ize zobrazit v hlavním menu v položce INFO.

Po přístupu do této položky je na displeji zobrazený typ vyhodnocovací jednotky, výrobní číslo a číslo verze firmwaru. Stiskem tlačítka ESC dojde k návratu do hlavního menu.

4

Po dokončení nastaveníjednotky doporučujeme provést RESET (CONFIGURATION/RESET) a zkontrolovat správnost nastavených parametrů!).

10. Způsob značení

11. PŘíkLADY SPRÁvNÉho OZNAČENí

FCU-400-R4-I-24
(R4) SSR reléové výstupy; (I) včetně proudového výstupu; (24V) napájecí napětí 9 .. 36V DC.
FCU-400-R0-0-230
(R0) bez reléových výstupů; (0) bez proudového výstupu; (230V) napájecí napětí 100 .. 240V AC.

12. Ochrana, bezpečnost, kompatibilita a nevýbušnost

Obě napájecí verze jednotky jsou chráněné vnitřní tavnou pojistkou.
Elektrické zařízení třídy ochrany II. Elektrická bezpečnost dle ČSN EN 61010-1.
Elektromagnetická kompatibilita (EMC) je zajištěna souladem s normami ČSN EN 55022 a ČSN EN 61000-4-2, $-3,-4,-5,-6$-11.

13. PoužívÁNí, obsluha a údržba

Jednotka nevyžaduje k provozu žádnou obsluhu. Obsluha technologického celku je za provozu informována o množství protečené kapaliny pomocí návazného zobrazovacího zařízení a v místě instalace displejem průtokoměru.

Údržba zařízení spočívá v kontrole neporušenosti průtokoměru a přívodního kabelu. Podle charakteru měřené látky doporučujeme alespoň $1 x$ ročně provést kontrolu čistoty měřicích elektrod, popř. provést její očištění. Při zjištění jakýchkoliv viditelných závad je nutné neprodleně kontaktovat výrobce nebo prodejce zařízení.

Na jednotce FCU-400 je zakázáno provádět jakékoliv změny nebo zásahy bez souhlasu výrobce. Eventuální opravy musí být prováděn jen u výrobce nebo jím pověřené servisní organizace.

Montáž, instalace, uvedení do provozu, obsluha a údržba jednotky FCU-400 musí být prováděno v souladu s tímto návodem a musí být dodržena ustanovení platných norem pro instalaci elektrických zařízení.

14. VŠEOBECNÉ ZÁRUČNÍ PODMÍNKY

Výrobce ručí od splnění dodávky za to, že tento výrobek bude mít po dobu 3 let stanovené vlastnosti uvedené v technických podmínkách.

Výrobce odpovídá za závady, které byly zjištěny v záruční době a byly písemně reklamovány.
Záruka se nevztahuje na závady vzniklé nesprávnou manipulací, nebo nedodržením technických podmínek.

Záruka zanikne, provede-li odběratel nebo třetí osoba změny nebo úpravy výrobku, je-li výrobek mechanicky nebo chemicky poškozen, nebo je výrobní číslo nečitelné.

K uplatnění reklamace je zapotřebí předložit záruční list.
V prípadě oprávněné reklamace vadný výrobek opravíme, nebo vyměníme za nový. V obou případech se záruční doba prodlouží o dobu opravy.

15. ZnAČENÍ ŠtítKŮ

Údaje na štítku snímačů řady FCU-400-R_-_-230V

Značka výrobce: logo Dinel ${ }^{\oplus}$; Internetová adresa: www.dinel.cz; Země původu: Made in Czech Republic
Typ hladinoměru: FCU-400-R_-_-230V
Sériové číslo výrobku: Ser. No.: \qquad - (zleva: rok výroby, pořadové výrobní číslo)

Napájecí napěti: U = 100 .. $240 \mathrm{~V} \mathrm{AC} \mathrm{/} 50$.. 60 Hz
Jmenovitý příkon: P = 10 VA
Rozsah pracovních teplot: ta $=-30 \ldots+50^{\circ} \mathrm{C}$
Krytí senzoru: IP65
Znak dvojitá izolace (zařízení trídy ochrany II): \qquad
Značka shody: C $€$
Značka pro zpětný odběr elektroodpadu:
Údaje na štítku snímačủ řady FCU-400-R_-_-24V

Značka výrobce: logo Dinel ${ }^{\circledR}$
Internetová adresa: www.dinel.cz
Typ jednotky: FCU-400-R_-_-24V
Sériové číslo výrobku: Ser. No.: xxxxx - (zleva: rok výroby, pořadové výrobní číslo)
Napájecí napětí: U = 9 .. 36 V DC
Jmenovitý přikon: P=8VA
Rozsah pracovních teplot: ta $=-30 \ldots+50^{\circ} \mathrm{C}$
Krytí senzoru: IP65
Znak dvojitá izolace (zařízení třídy ochrany II): \qquad
Značka shody: C $€$
Značka pro zpětny odběr elektroodpadu: \%
(i) Velikost štitků $90 \times 20 \mathrm{~mm}$, zobrazená velikost neodpovidá skutečnosti.

16. Technické parametry

ZÁKLA DNí TECHNICKÉ Ú DAJE	
	FCU-400

17. Balení, doprava a skladování

Zařízení FCU-400 je zabaleno do polyetylénového sáčku a celá zásilka je umístěna do kartonové krabice. V kartonové krabici je použito vhodné výplně k zamezení mechanického poškozeni při přepravě.

Zařízení vyjměte z obalu až před jeho použitím, zabráníte tím možnému poškození.
Přeprava k zákazníkovi je realizována spediční firmou. Po předchozí domluvě je možný i osobní odběr objednaného zboží v sídle firmy. Při převzetí prosím překontrolujte, zda-li je zásilka úplná a odpovídá rozsahu objednávky, popř. zda při přepravě nedošlo k poškození obalu a zařízení. Zařízení zjevně poškozené při přepravě nepoužívejte, ale kontaktujte výrobce za účelem vyřešení situace.

Pokud bude zařízení dále přepravováno, pak pouze zabalené v originálním obalu a chráněné proti otřesům a povětrnostním vlivům.

Zařízení skladujte v originálním obalu v suchých prostorách, krytých před povětrnostními vlivy, s vlhkostí do 85% bez účinků chemicky aktivních látek. Rozsah skladovacích teplot je $-10^{\circ} \mathrm{C}$ až $+50^{\circ} \mathrm{C}$.

Dinel ${ }^{\circ}$ průmyslová elektronika

Dinel, s.r.o.
U Tescomy 249
76001 Zlín
Česká republika

Tel.: +420 577002002
E-mail: obchod@dinel.cz
www.dinel.cz

